
J .  Fluid Me&. (1982), vol. 114, p p  343-369 

Printed in Great Britain 
343 

On the inviscid instability of a circular jet with external flow 
By ALFONS MICHALKE 

Hermann-Fottinger-Institut fur Thermo- und Fluiddynamik, 
Technische UniversitLit Berlin, West Germany 

AND GUNTER HERMANN 
Wen. Austria 

(Received 10 February 1981) 

The influence of an external flow velocity on the instability of a circular jet has been 
investigated by means of the inviscid linearized stability theory. The instability 
properties of spatially growing axisymmetric and first-order azimuthal disturbances 
show that the external flow inhibits the instability of the circular jet, but increases 
the unstable frequency range. Similarity considerations lead to the result that, in a 
first approximation, the disturbed flow field is independent of thc external flow 
velocity, if the axial co-ordinate is contracted by a suitably chosen stretching factor 
and if the disturbance frequency is reduced by the same factor. It is concluded that 
the large-scale structure of jet turbulence is modified in the same manner by the 
external flow. 

1. Introduction 
For the prediction of jet noise from a jet engine in flight, it  is necessary to know the 

influence of forward flight speed on the jet turbulence. In a co-ordinate system fixed 
to the moving engine, the jet velocity decays to a constant ambient velocity U, 
which corresponds to the flight speed of the engine. The influence of this external flow 
on the jet turbulence is not yet fully understood. Since the vorticity contained in the 
initial shear layer of the jet is proportional to the velocity difference AU = U, - U,, 
where ZJ. is the jet exit velocity, one would reasonably assume that the jet turbulence 
would scale with AU, but experimental results of Sarohia & Massier (1977) and of 
Tanna & Morris (1977) seem to indicate that this is not necessarily true. 

There is, however, a wide agreement that the jet is stretched in the axial direction 
by the external flow. This phenomenon leads to a decreasing spreading angle of the 
jet mixing zone with increasing external flow velocity U, as observed among others 
by Tanna & Morris (1977) and by Sarohia (1979). First theoretical results on this 
stretching effect for a circular jet have been obtained by Squire & Trouncer (1 944). 
To take the jet stretching into account, it was therefore reasonable to assume t.hat in 
a first approximation the flow field remains unaffected by the external flow velocity 
U, in a co-ordinate system which is axially contracted by a constant stretching factor 
cr(U,, q). Ffowcs Williams (1963) used a stretching factor c = U,/AU in his calcula- 
tion of the noise from moving jets. Unfortunately, his theoretical results did not agree 
with measured noise data. Therefore one cannot exclude as one possible reason his 
assumption on the stretching of the jet flow field. Recently, Michalke & Michel(l979) 
re-examined the problem. They also used a stretching model for the jet flow and 
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turbulence by assuming a stretching factor u = 1 -I- AU,/AU with a stretching 
parameter A in the order of 1-3. Surprisingly, good agreement was found between 
theoretical and experimental results for the radiated noise, when a stretching para- 
meter A = 2 was used. If this agreement is not an accidental one, it should be expected 
that, in fact, the influence of the external flow velocity U, on the jet turbulence 
should be almost eliminated, if the turbulence is considered in a co-ordinate system 
axially contracted by the stretching factor u. This can surely be checked by experi- 
mental investigation. 

On the other hand, the large-scale structure of jet turbulence, as first found by 
Mollo-Christensen (1967), Crow & Champagne (1971) and Fuchs (1972), seems to be 
well modelled by linear stability theory, as was shown by Michalke (1971), Chan (1974) 
and others. Hence it should also be possible to study the influence of an external flow 
on jet turbulence by means of linear stability theory. If an axially contracted co- 
ordinate system exists in which the jet turbulence is approximately independent of 
the external flow velocity U,, then the same should be true for the results of linear 
st*ability theory. 

The aim of the present paper is therefore to investigate the instability of a circular 
jet with external flow by means of linearized stability theory and to look for any 
similarity condition which can, at  least approximately, eliminate the Urn-dependence 
of the results. For simplicity the flow is assumed to be isothermal with vanishing 
Mach number. Furthermore, viscous effects as discussed by Morris (1976) and effects 
due to the slowly divergent jet flow as investigated by Crighton & Gaster (1976) and 
Plaschko (1979) are neglected, too. It was found by Armstrong, Michalke & Fuchs 
(1977) and by Stromberg, McLaughlin & Troutt (1980) that the large-scale structure 
of turbulence in a circular jet is dominated by the axisymmetric and first-order 
azimuthal components of turbulence. Hence we restrict our stability calculation to 
these two components, too. 

In $ 2  the disturbance equation and the basic jet velocity profile are given and the 
results of the static (U, = 0) case are presented. In  $3 the effect of the external flow 
velocity U, on the instability properties of the jet is discussed. Finally, in $ 4  it  is 
shown that, at  least approximately, the results become independent of U,, if a stretch- 
ing factor u is introduced. 

2. Solution of the instability problem 
The basic jet flow field to be investigated is assumed as a locally parallel flow with 

U ( r )  being the axial velocity component of the undisturbed jet flow. The Reynolds 
number of the flow is assumed to be large and the density to be constant. Then the 
instability properties can be derived by using the Euler equation for an incompressible 
fluid in a cylindrical co-mdinate system (x, r ,  $), where the z-axis corresponds to the 
jet axis. A small pressure disturbancc 

and corresponding disturbances of the axial, radial and azimuthal velocity com- 
ponents are introduced in the linearized Euler and continuity equations. The resulting 
disturbance equation can be found, for instance, in the book of Betchov & Criminale 
(1967). For spatially growing disturbances the circular frequency /3 and the azimuthal 
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FIGURE 1.  Normalized basic jet velocity profiles for various values of 
the jet parameter RIB. 

wavenumber m are real quantities, while a = a,+ia, is generally complex. a, is the 
axial wavenumber and a, the spatial growth rate. The disturbance is unstable if 
-a, > 0; m = 0 corresponds to an axisymmetric disturbance and m = 1 to the first 
azimuthal one. 

If all other quantities are eliminated in favour of the pressure disturbance amplitude 
@(r),  then we obtain the disturbance equation: 

The boundary conditions to be satisfied by the disturbance are: 

@(O) = finite, @(a) = 0. (3)  

Hence an eigenvalue problem is posed, namely that, for a given frequency fl ,  the 
complex eigenvalue a has to be found which leads to an eigenfunction @(r) of (2) 
satisfying the boundary conditions (3). 

In the following we use the basic jet velocity profile 

which, for the static case Urn = 0, has been investigated by Michalke (1971), Crighton 
& Gaster (1976), Morris (1976) and by Plaschko (1979) and which seems to model the 
circular jet flow in the potential-core region quite well, as was shown by Moore (1977). 
q. is the jet core velocity, Urn the external flow velocity and AU = q. - U, . 0  is the 
momentum boundary layer thickness of the jet shear layer, defined by 

The radius R denotes the middle of the jet shear layer, defined by U ( R )  = $(U;. + Urn). 
The jet parameter R/B characterizes jet velocity profiles at different axial positions. 
According to Crighton 8: Gaster (1976) we have, for U, = 0, 

RI0 = 100 / (3 .~ /R+  4). (6) 
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F~GURE 2. Spatial growth rate -ai as function of the frequency p for the static case U, = 0 
and various values of the jet parameter RIO. -, axisymniet,ric disturbance; ---- , first azi- 
muthal disturbance. 

We restrict the present investigation to three values of the jet parameter, namely, 
RIB = 10, 5 and 2.5 which corresponds to the axial positions x l ( 2 R )  = 1, 2-87 and 6 .  
In a normalized plot the velocity profiles are shown in figure 1. 

The numerical procedure to solve the eigenvalue problem is as follows: the differen- 
tial equation ( 2 ) )  written as a first-order system, has been integrated numerically by 
means of a Runge-Kutta procedure with automatic step-size choice and correction. 
The infinite integration region 0 c r < 00 is divided into two finite regions, an inner 
region r,, Q r < r,  and an outer region ?;n Q r < rm.  Since dUldr  vanishes as r+O 
and as r -f 00, the asympt,ot'ic solutions of ( 2 )  satisfying the boundary condition (3) are 

@$] 3 C , f , ( r )  +CII,,,(ar); j$; = C2fo(r)+C2K,(crr), (7)  

where I,,, and K, are the modified Bessel ftinctions of order m. If ro and rm (dependent 
on the jet parameter RIB) are chosen such that d U l d r  is sufficiently small, then we 
can start the integration with ( 7 )  at these points for a suitably chosen value a and 
integrate (2) up to r = rmr which conveniently is chosen as rm = R. The required 
matching conditions at  r = r, are that @ and d@/dr are to be continuous. Hence the 
eigenvalue equation for a is 

(8) 

By means of a parabolic complex zero-search procedure, the eigenvalue a has been 
varied until IF1 was sufficiently small. 

For the static caae U, = 0, the instability properties of the jet profile (4) have been 
already presented by Michalke (1971). It is convenient to normalize the spatial growth 
rate -a$ and the frequency B by means of the shear-layer thickness 0 and the velocity 
difference AU,  respectively, which is here identical with the jet velocity q.. Figure 2 
shows the dimensionless spatial growth rate - a,B ws. the dimensionless frequency 

F ( a )  = fo(r,,,) df1(rm)ldr -fi(Tm) dfo(m,)ldr = 0. 



Inviscid instability of ( I  circztlar j e t  345 

0.4 I 
0 0.1 0.2 0.3 0.4 0.5 

fie - 
A T  

FIGURE 3. Phase velocity cph aa function of the frequency p for thc static case u, = 0 and 
various values of the jet parameter RIB. -, axisymmetric disturbance; ---- , first azimuthal 
disturbance. 

pO/AU for the jet parameter values R/O = 10, 5 and 2-5 and for the axisymmetric 
(m = 0, full line) and the first azimuthal (m = 1, broken line) disturbances. It is 
obvious that with decreasing RIB, i.e. with increasing downstream distance x ,  the jet 
velocity profiles become less unstable. For low frequencies the first azimuthal dis- 
turbance is always more unstable than the axisymmetric one. We note, however, that 
for R/O 2 6.25 approximately, i.e. xl(2R) Q 2, maximum amplification is found for 
m = 0, cf. Michalke (1971)) while further downstream the m = 1 disturbance is the 
most unstable one. This fact is in agreement with experimental results of Armstrong 
et al. (1977) who found strong first azimuthal components in jet turbulence for 
x / D  > 2 and relevant Strouhal numbers Bt = fD/AU x 0.1 to 0.6. Here D is the jet 
exit diameter and f the frequency. In  fact, the peaks of the spatial growth rate belong 
to this Strouhal number range. If we put D cz 2R, we have peak Strouhal numbers for 
m = 0 of about 0.45, 0.30 and 0.22 for RIB = 10, 5 and 2.5, respectively. This corres- 
ponds to the fact that the peak of the turbulence spectrum is shifted to lower fre- 
quencies with increasing downstream distance. 

In  figure 3 the axial phase velocity cph = p/a, is plotted as function of the frequency 
/3 for m = 0 (full lines) and m = 1 (broken lines) and for the same values of the jet 
parameter RIB. The phase velocity of the axisymmet'ric disturbance (m = 0) always 
decreases from the jet velocity U, at frequencies B + O  to lower values a t  higher 
frequencies. The lower the jet parameter R/O, the higher is the phase velocity. For a 
fixed value of the jet parameter R/O the phase velocity of the first azimuthal dis- 
turbance (m = 1) is always smaller than the axisymmetric one and increases for 
R/O < 5 at higher frequencies. The phase velocity measured in jet turbulence, excited 
artificially by a loudspeaker, by Crow & Champagne (1971)) Chan (1974) and Bechert 
& Pfizenmaier (1975) showed the tendency of the axisymmet,ric disturbance, cf. 
Michalke (1971). For an unexcited jet, however, the measured phase velocity follows 
more closely the tendency of the first azimuthal disturbance at low frequencies, as 
can be seen from KO & Davies (1975) and Armstrong (1977). 

The difference in the frequency dependence of the phase velocity between that 
found in natural and excited jet turbulence at low frequencies can be explained by 

I2 FLhI 114 
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FIQURE 4. Spatial growth rate - ai as function of the frequency B for the jet parameter RIB = 10 
, first and various values of the velocity ratio U J A U .  -, axisymmetric disturbance; ---- 

azimuthal disturbance. 

0 0.1 0.2 0.3 0.4 0.5 0.6 
P e -  
A T  

FIQURE 5. Spatial growth rate - ai aa function of the frequency B for the jet parameter RIB = 5 
, first and various values of the velocity ratio U J A U .  -, axisymmetric disturbance; ---- 

azimuthal disturbance. 

means of the present results as follows. For low frequencies the natural jet turbulence 
has strong first azimuthal components sufficiently far downstream of the jet exit, a8 

was found by Armstrong et a2. (1977). From the view of stability theory this is quite 
reasonable, since at  low frequencies the jet flow is more unstable to first azimuthal 
disturbances than to axisymmetric ones. Hence the phase velocity of natural jet 
turbulence will also be dominated by these components. If the jet turbulence is, 
however, excited by a loudspeaker, it  is the axisymmetric disturbance which is 
excited most strongly, because of the axisymmetric sound field and initial conditions 
at the jet exit. It is clear that under these circumstances the measured phase velocity 
of the excited jet turbulences will have the tendency of that of the axisymmetric 
disturbance. These considerations show that excited jet turbulence will generally not 
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FIGURE 6. Spatial growth rate - ai &s function of the frequency p for the jet parameter RIB = 2.5 
and various valuea of the velocity ratio U , f A U .  -, axisymmetric disturbance; ---- , first 
azimuthal disturbance. 
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FIGURE 7. Pheae velocity cvh as function of the frequency for the jet parameter R / 8  = 10 
and various values of the velocity ratio U , / A U .  -, axisymmetric disturbance; ---- , first 
azimuthal disturbance. 
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FIQURE 8. Phase velocity c,,, as function of the frequency fi  for the jet parameter R/8 = 5 
and various values of the velocity ratio U , / A U .  -, axisymmetric disturbance; ---- 
azimuthal disturbance. 
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FIGUF~E 9. Phase velocity c,, as function of the frequency B for the jet parameter RIB = 2.5 
and various values of the velocity ratio U , / A U .  -, axisymmet,ric dist,urbance; ---- , first 
azimuthal disturbance. 
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have the properties of natural jet turbulence, unless all azimuthal components of 
natural jet turbulence are equally strongly amplified by the exciting sound field. 

3. Influence of the external flow velocity on the jet instability 
Further calculations have been made for the circular jet with the external flow 

velocity U, > 0. The results are shown for the velocity ratios U,lAU = 0, 0.1, 0.3 
and 0.5. In figures P 6  the spatial growth rates 2rs. frequency of the axisymmetric 
(full lines) and first azimuthal (broken lines) disturbances are shown for the jet 
parameter values R/8  = 10, 5 and 2.5, respectively. In figures 7-9 the corresponding 
phase velocities are shown. 

The common tendency is that with increasing external flow velocity U, the jet flow 
becomes less unstable, since the spatial growth rate -a, decreases. However, the 
region of unstable frequencies is increased and the peak of the spatial growth rate is 
shifted to higher frequencies. With respect to  jet turbulence one would therefore 
expect that the downstream development of turbulence is retarded by the external 
flow, but that the spectrum becomes broader and its peak is shifted to higher fre- 
quencies, provided the natural random excitation mechanism is unaffected by U,. 

The phase velocity of the disturbances is always increased by the external flow 
velocity U, and can well exceed the value of the velocity difference AU = U, - U,. 

4. Similarity considerations 
From the disturbance differential equation (2) it follows that the basic jet velocity 

profile U(r ) ,  which is here of the form given by (4), enters the problem only in the 
ratio 

For the static case U, = 0 and spatially growing disturbances the eigenvalues a are 
a complex function g of the real frequency ~3, i.e. 

(10) 
In  order to eliminate the influence of U,, we can introduce a modified complex eigen- 
value a. by putting 

(11) 
where 

a = ar+ia6 = g(P) .  

B/a = PI@.,+ u w  = (P/ao) a,, 

a 0  u, . a o , u w  a, = ao,+iao, = 1+-u, = 1+-+2--. 
B co a, co 

Here co = P/a, is a phase velocity. Equation (1 1) then yields 

Furthermore, equation (9) becomes 
a = ao/vo. 

Purely formally, the parameter UJAU is now eliminated and with (13) and (14) the 
differential equation (2) has the equivalent eigenvalue relation as (10) in the static 
case, namely 

The only difference from the static case (U, = 0) is that here the argument P/a0 of 
ao/ao= g(P /ao) *  (15) 
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m\Rlfl 10 5 2.5 

0 1-66 1.40 1.11 
1 1-97 1-48 1.33 

TABLE 1. Stretching parameter A ,  calculated from the neutral phase velocities. 
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FIGURE 10. Reduced spatial growth rate - ai a, vs. reduced frequency BIu,, for the jet parameter 
RIB = 10 and the velocity ratios U,/AU = 0.1 (0,  0 )  and 0.5 (0. .) compared with the 
static case U, = 0. 0, 0 ,  -, axisymmetric disturbance; 0, a, ----, first azimuthal dis- 
t urbance . 

the function g is now generally complex. An exception is the neutral case a, = 0 
where 

is real with the neutral phase velocity c,. 

goneutral g n  = 1 + Um/cn 

Let us now put with (12) 

and assume !A1 4 1. Then we find from (12) that 

1 1  - NN - [l - iAIl  
g o  g o ?  

approximately, and can use the expansion 
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FIGURE 11. Reduced spatial growth rate -a, an v8. reduced frequency P/U, for the jet para- 
meter RIB = 6 and the velocity ratios U,/AU = 0.1 (0,  0 )  and 0-6 (., .) compared with 
the static c w  U, = 0. 0, 0,  -, axisymmetric disturbance; 0,  ., ----, first azimuthal 
disturbance. 
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FIQURE 12. Reduced spatial growth rate -a,u, VB. reduced frequency b/un for the jet para- 
meter RIB = 2.6 and the velocity ratios U J A U  = 0.1 (0,  0 )  and 0.6 (., .) compared with 
the static casc U ,  = 0. 0,  0,  -, axisymmetric disturbance; 0,  ., ----, first azimuthal 
disturbance. 
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FIQURE 13. Relative phase velocity cph- U, vs. reduced frequency B/u, for the jet parameter 
R / 8  = 10 and the velocity ratios U J A U  = 0.1 (0, 0) and 0.5 (0,  .) compared with the 
static case U, = 0. 0, 0 ,  -, axisymmetric dist,urbance; 0,  m, ----, first azimuthal dis- 
turbance. 

FIGURE 14. Relative phase velocity cph- U, vs. reduced frequency /?/a,, for the jet parameter 
R/8 = 6 and the velocity ratios U , / A U  = 0.1 (0, 0 )  and 0.5 (0, .) compared with the 
static case U, = 0. 0, 0 ,  -, axisymmetric disturbance; 0,  ., ----, first azimuthal dis- 
turbance. 

where the approximation g' = d(a,/a,)/d(p/a,) N a,,,/p has been used. Furthermore, 
from (1 3) there follows 

Here the definitions of a,,,, aoi and A due to (12) and (1 7) have been used. Hence, with 
(19) and (20), it follows from (15) that, approximately, 

(%+ 4.&/%r = s(B/%r,. (21) 
Since the argument P/aw of t,he function g is now real, the complex eigenvalues 

ao/uw have the same dependence on /3/u0, as a in t)he static case on p. Hence it follows 
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FIGURE 16. Relative phase velocity cph- Urn us. reduced frequency plum for the jet parameter 
RIB = 2.6 and the velocity ratios U,/AU = 0.1 (0, 0)  and 0-5 (0 ,  .) compared with the 
static case Urn = 0. 0, 0 ,  -, axisymmetric disturbance; 0,  ., ----, first azimuthal dis- 
turbance. 

that the quantities a,,Jcr.,, aoi/cr,,, and co = @/aw are functions of p/crw, independent 
of Urn in this order of approximation. Furthermore, i t  follows from (20) and (21) that 
in this order of approximation the quantities 

ar = aW/u,, crOrat = aot/cr,, cph - Urn = p/ar - urn = cO, (22) 

would also depend only on @/crw, regardless of the actual value of Urn. Hence co is the 
phase velocity of the static case (U, = 0 )  which is a function of frequency, jet para- 
met,er R/8 and azimuthal order m. 

In  a next stage of approximation we may replace crw by its neutral value cr, due 
to (10)) i.e. the phase velocity co by the neutral one, c,, which depends only on the jet 
parameter RIB and on m. Then we can write crw in the form of the stretching factor 
introduced by Michalke k Michel(l979) : 

x u,, = l+A ,Urn /AU.  (23) 

The values of A, = AU/c, evaluated from the neutral phase velocities of the static 
case are given in table 1. 

In  figures 10-12 the reduced spatial growth rates (-a,Ou,) us. /?8/(AUa,), for 
m = 0 and m = 1 and UJAU = 0.1 and 0.5, are compared with the static curves 
(U, = 0 )  for the jet parameter values RIB = 10,6 and 2.5, respectively. The calculated 
and reduced values for U, > 0 are marked by circles (rn = 0 )  and squares (m = l ) ,  
respectively. It is obvious that for RIB = 10 (figure 10) the correlation is not com- 
pletely satisfactory, but that the deviation from the static curves becomes smaller 
for RIB = 5 (figure 11) and 2.5 (figure 12). This is remonable, since for smaller values 
R/8 the ratio aor/a, contained in the quantity A due to (17) becomes smaller. In the 
neutral cme the approximate relation (21) is exact. Hence for still smaller values of 
RIB a still better agreement can be expected. 



356 A .  Michalke and G .  Hermann 

0 0.1 0.2 0-3 0-4 0.5 
E L -  
AU a 

FIGURE 16. Spatial growth rate -aiu us. freqiiency P/u reduced by the universal stretching 
factor u = 1 + A U , / A U  for the jet parameter values R/O = 5 and 2.5 and the velocity ratio 
U , / A U  = 0.5 compared with the static case U ,  = 0.  0, n, A = 1.4; 0 ,  .,A = 2. 0, 0 ,  -, 
axisynimetrie disturbance; 0, , ----, first azimuthal diatiirbance. 
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FIGURE 17. Relative phaae velocity cph - U ,  w. freqiiency p/u reduced by the universal stretch- 
ing factor u = l+AU, /AU for the jet parameter values RIB = 5 and 2.5 and the velocity 
ratio U , / A U  = 0.5 compared with the static case Urn = 0. 0, 0, A = 1.4; 0,  W ,  A = 2. 
0, 0 ,  -, axisymmetric disturbance; 0, m, ----, first azimuthal disturbance. 

The same tendency can be observed in figures 13-15, where the corresponding 
values of the reduced phase velocity (cph - U,)/AU are plotted. For R/O = 5 and 2.5 
the agreement is here more complete than with respect to the growth rates. 

These results indicate that, at least approximately, similarity conditions exist. 
However, the stretching factor crm defined by (23) still depends on the azimuthal 
order m and on the downstream distance x via the jet parameter RlO. In the paper of 
Michdke & Michel (1979) a universal stretching factor 

CT = 1 + AU,/AU,  (24) 
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with a stretching parameter A = 2 has been found useful. From the present instability 
results one would prefer a value of about A = 1.4 as being more reasonable, since it 
corresponds to co/AU = 0-71 which is a good mean value for the phase velocity. For 
R / 8  = 5 and 2.5, and for U,/AU = 0.5, both values A have been checked. Figure 16 
shows the results for the reduced growth rate and figure 17 those for the reduced 
phase velocity. Again, the calculated and reduced values for U,/AU = 0.5 are marked 
by circles (m = 0) and squares (rn = l) ,  respectively. It is obvious that the stretching 
parameter A = 2 leads to relatively unsatisfactory results, while A = 1.4 gives 
acceptable agreement which should be still better for smaller values of the velocity 
ratio UJAU.  Therefore the stretching factor u of (24) with A = 1.4 seems to offer a 
suitable way to eliminate the influence of the external flow velocity Uw from the 
instability properties of the disturbed jet flow in a first approximation. Hence the 
same can be expected to be true for the large-scale structure of jet turbulence. If we 
now introduce a contracted axial co-ordinate i$ = x/u, then the pressure disturbance 
according to (1) becomes 

Since in the framework of this approximation the reduced spatial growth rate - aiu 
and the reduced phase velocity co are independent of the external flow velocity U, for 
constant /l/u = /lo, the pressure field remains unchanged in this contracted co-ordinate 
system ( f ,  r ,  #) provided the frequency Po in the static case is increased by a factor u 
for U, > 0. When, however, the instability properties of the jet can be described 
universally in this way, then one would expect that the turbulence generated by this 
instability would also be universal in a first approximation. If that were true we would 
find the turbulence spectra normalized by AU in the contracted co-ordinate system to 
be broader for U ,  > 0 without any change in their magnitudes. The peak spectral 
value would be shifted to a frequency higher by the factor u than that in the equiva- 
lent static case. There is some evidence from experimental results? that this hypo- 
thesis is not unrealistic. As a consequence it would, however, follow that the mean 
square values of turbulent quantities are increased by a factor u in the presence of the 
external flow. This increase of turbulent energy at constant AU is due to the increased 
range of unstable frequencies, which leads to a broader spectrum. For the uncon- 
tracted, original co-ordinate system we should therefore expect that, for instance, 
ther.m.s. pressure@(x, r,  U,, U,) for the jetvelocity qandexternal velocity U-isrelated 
to the equivalent st,atic r.m.8. pressure @(x, r,  U,, 0) for an equivalent jet velocity U, by 

where F is a universal function and CT is defined by (24) with A 21 1.4. It is clear from 
(26) that the dependence of the mean square pressure ratio on the external flow 
velocity U, is not altogether simple, if both measurements, for U, = 0 and Uw > 0, 
are made at the same axial position x. For the plane mixing layer, where A = 2 is 
more appropriate, Yule (1972) found experimentally that the normalized turbulent 
intensity q2/AU2 increases with increasing external flow velocity. 

t Private cominunication from Dr U. Micliel, Berlin. 
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5. Concluding remarks 
The present investigation concerning the instability of a circular jet with external 

flow has shown that the spatial growth rate of axisymmetric and first azimuthal 
disturbances is reduced by the external flow, but the range of unstable frequencies 
and the phase velocity are increased. The influence of the external flow can be elimin- 
ated approximately, if the flow is considered in a co-ordinate system which is axially 
contracted by a stretching factor u = 1 + l*4Urn/AU and if the frequency is reduced 
by the same factor c. It is concluded that the same should be true for the jet turbulence 
as far as the large-scale structure is considered. Since the spectra should be broadened 
in presence of the external flow, the mean square values of turbulent quantities at 
fixed axial position x/u should increase by the factor c as compared to the case 
without external flow. The present results show that the assumptions concerning the 
influence of flight speed on jet turbulence made by Michalke & Michel (1979) for the 
prediction of jet noise in flight might require a correction. Their relation between the 
sound intensity If(Uj ,  Urn) of the jet in flight and the sound intensity Io(Ue, 0) of 
the static jet with the effective static jet velocity V, = L$ - U, is, for the noise radiation 
at  an emission angle of 90" to the jet axis, given by 

and was based on the assumption that in an axially contracted co-ordinate system 
the mean square value of the source quantity is independent of the flight speed Urn. 
Good agreement with experimental results was found if the stretching parameter A 
of equation (24) ww chosen as A = 2. In the light of the present results one should, 
however, expect a relation 

(28) 

with a stretching parameter A x 1.4, instead of (27). For small values of U,/AU, 
however, the difference between (27) and (28) is very small, since we have in (27) 

q V , ,  Urn) = a3I,(U,, 0 )  

u2 = [i + 2U,/bUl2 N 1 + 4Urn/AU, 

while (28) yields 
a 3  = [ i  + 1.4U,/AU]3 N 1 + 4.2Urn/AU. 

(29) 

(30) 

This may explain why good agreement between experimental and theoretical results 
has been found by Michalke & Michel (1979), although the assumptions concerning 
the stretching mechanism of jet flow seem to be not quite correct. 

The authors wish to express their gratitude to Dr P. Plaschko, Berlin, who kindly 
makes an existing computer program available to the authors; and to Dr U. Michel, 
Berlin, for many stimulating discussions. 
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